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Abstract A recent conjecture regarding the average of the minimum eigenvalue of the re-
duced density matrix of a random complex state is proved. In fact, the full distribution of
the minimum eigenvalue is derived exactly for both the cases of a random real and a random
complex state. Our results are relevant to the entanglement properties of eigenvectors of the
orthogonal and unitary ensembles of random matrix theory and quantum chaotic systems.
They also provide a rare exactly solvable case for the distribution of the minimum of a set
of N strongly correlated random variables for all values of N (and not just for large N).

Keywords Entanglement - Random pure state - Extreme value statistics

1 Introduction

Entangelement has been studied extensively in the recent past due to its central role in quan-
tum information and possible involvement in quantum computation [1, 2]. It is desirable in
many instances to create states of large entanglement. Measures of entanglement have been
studied mostly in the context of pure bipartite states, where the von-Neumann entropy of
either subsystem is one of the measures of entanglement [2]. However there exist other mea-
sures of entanglement as well, e.g. the so called concurrence for two-qubit systems [3, 4].
The entanglement of random pure quantum states is of interest as they have near maximal
entanglement content, especially in the context of bipartite entanglement [5]. Apart from the
issue of bipartite entanglement, statistical properties of such random states are relevant for
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34 S.N. Majumdar et al.

quantum chaotic or non-integrable systems. The applicability of random matrix theory and
hence of random states to systems with well-defined chaotic classical limits was pointed
out long back [6]. They are also of relevance to other systems with no apparent classical
limit [7-9].

In this paper, we focus on a bipartite quantum system. More precisely, we consider a
bipartite partition of a N M-dimensional Hilbert space HN™ as HNM =1V @ H( . We
can assume without loss of generality N < M. As an example of such a bipartite system,
A may be considered a given subsystem (say a set of spins) and /3 may represent the envi-
ronment (e.g., a heat bath). Any quantum state |v) of the composite system can be generally
written as a linear combination, |y) = Z,N:l 224:1 Xioli*) @ |aB) where |i4) and |a®) de-
note two complete basis of H;N) and H%M) respectively and the coefficients x; ,’s form the
entries of a rectangular (N x M) matrix X. Mutually nonexclusive properties of such a state
are entanglement, randomness and statistical purity. Such a quantum state |y) is:

e Entangled: if not expressible as a direct product of two states belonging to the two sub-
systems A and 5. Only in the special case when the coefficients have the product form,
Xio = a;bg, for all i and «, the state |1/) = [¢*) ® |¢®) can be written as a direct product
of two states [p4) = Y, a;]i*) and [p®) =S¥ b,|a®) belonging respectively to the
two subsystems A and B. In this case, the composite state |) is fully unentangled. But
otherwise, it is generically entangled.

e Random: if the coefficients x; , are random variables drawn from an underlyting probabil-
ity distribution. The simplest and the most common random state corresponds to choosing
Xio S as independent and identically distributed Gaussian variables, real or complex.

e Pure: if the density matrix of the composite system is simply given by, p = | ) (| with
the constraint Tr[p] = 1, or equivalently (y|y) = 1.

Given a random, pure and generically entangled composite state, important informations
on the results of the measurement of any observable on the subsystem A can be derived
from the reduced density matrix ps = Trg[p], obtained upon tracing out the environmental
degrees of freedom (i.e., those of subsystem B). It is easy to show (see Sect. 2 for de-
tails) that for a random pure state, p4 = XX is an N x N square matrix where X is the
N x M rectangular coefficient matrix. The N unordered eigenvalues A, Ao, ..., Ay of pa
carry important informations regarding the degree of the entanglement in the subsystem A.
Given that the entries x; , of the coefficient matrix X are independent Gaussian variables
(real or complex), the eigenvalues A;’s of the matrix p, = X X' are also random variables
and their joint probability density function (jpdf) is known [10, 11]

N N
EM-N+1)—1
P(Ai, 22y ..o hy) = By NS (in—l)nkf [T —wlf

i=l i=l Jj<k

Here 8 =1, 2 corresponding to the real and complex entries of A and By, y is the normal-
ization constant that is known explicitly [11]. Several spectral properties associated with the
jpdf in (1), in particular for the complex B8 = 2 case, have been studied extensively in the
literature, for instance see the book [12] and references therein.

In principle, all informations about the spectral properties of the subsystem .A, including
its degree of entanglement, are encoded in the jpdf (1). For example, one useful measure of
entanglement is the von Neumann entropy S = — Z,N: 1 Ai In(%;) which is a random variable.
The average entropy (S) (where the average is performed with the measure in (1)) was com-
puted for 8 =2 by Page [13] and was found to be (S) ~ In(N) — % forlarge | K N < M.
Noting that In(/N) is the maximal possible value of entropy of the subsystem .A, it follows
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Exact Minimum Eigenvalue Distribution 35

that in the limit when M >> N, the average entropy, and hence the average entanglement, of
a random pure state is near maximal. Later, the same result was shown to hold for the g =1
case [14].

While the average entropy is a useful measure of entanglement, it is not the unique one.
In fact, important informations regarding the nature of entanglement of a random pure
state can also be obtained (see Sect. 2 for a detailed discussion) by studying the prob-
ability distributions of the extreme eigenvalues A, = max(Aj, Az, ..., Ay) and Ay =
min(Ay, A, ..., Ay). In particular, the probability distribution of the minimum eigenvalue
Amin provides, in addition to the nature of the entanglement, an important information about
the degree to which the effective dimension of the Hilbert space of the subsystem A can be
reduced.

In fact, the average value (An,) (With respect to the measure in (1)) of the minimum
eigenvalue was studied recently by Znidaric [15] for the case N = M and based on the
exact (Amin) for small values of N, Znidaric conjectured that (Ayy,) = 1/N? for all N for
the complex case (8 = 2). The purpose of this paper is to provide exact results for the
full probability distribution of Ay, for all N (for the case when N = M), both for the
complex (B = 2) and the real (8 = 1) cases. A byproduct of our general results is the proof
of Znidaric’s conjecture for 8 = 2. Our results are summarized as follows. Let Py (x)dx
denote the probability that x < A, < x +dx,i.e., Py(x) is the probability density function
(pdf) of Apin. We show that

o Complex case (B =2):
Py(x)=N(N? = 1)(1 = Nx)V"20(1 — Nx) )

where ®(x) is the standard Heaviside function, ®(x) =1 for x > 0 and ®(x) = 0 for
x < 0. The k-th moment 14 (N) = (Ak, ) is given by

I'(k+ DT(N?)

N =N

3

In particular, for k = 1, we get ;u; (N) = 1/N? thus proving the recent conjecture in [15].
e Real case (B = 1): the result for the real case turns out to be a bit more complicated. For
the pdf of A, we get

N+2 N—1 N*+N—-2 1-—N
PN(x):ANx’N/z(I—Nx)(Nz“V"‘)/zzF]( ks ha - x),

2 27 2 ’ X
O0<x<I1/N 4
and Py(x) =0 for x > 1/N. The constant Ay is given by

B NT(N)I'(N?/2)
C2NSIT(N/2T((N2+ N —2)/2)°

&)

Ay

and , F (e, B, v, 2) is the standard Hypergeometric function defined as [16]

L, eB al+DBB+DZ
2F1(O[v,37 V7Z)—1+7Z+W5

et D+ BB DB+
Yy + Dy +2) 3!

(6

@ Springer



36 S.N. Majumdar et al.

The moments i (N) = (Afnm) are also computed exactly and are given in (58). In partic-
ular, the average value (k = 1) decays for large N as

c
mN)~ — O]

where the prefactor ¢ has a nontrivial value

c:2|:1 - /%erfc(l/ﬁ)] — 0.688641 ... )

The paper is organized as follows. In Sect. 2, we provide a general introduction to the
random pure states of a bipartite system and recapitulate some general facts leading to the
jpdf (1). Sections 2 and 3 provide the detailed calculations of the distribution of the minimum
eigenvalue for the complex and the real cases respectively. Finally we conclude in Sect. 4
with a summary and open questions. Some details of the calculations are presented in the
two appendices.

2 A Random Pure State of a Bipartite System

In this section we recall some general facts about a random pure (RP) state of a bipartite
system, its entanglement properties and the associated random matrix ensemble. As men-
tioned in the introduction, let us consider a composite bipartite system A ® B composed
of two smaller subsystems A and B, whose respective Hilbert spaces H;N) and HE,;M) have
dimensions N and M. The Hilbert space of the composite system H™") = HfAN) ® H;M) is
thus N M-dimensional. Without loss of generality we will assume that N < M. Let {|i*)}
and {|a®)} represent two complete basis states for A and B respectively. Then, any arbitrary
state |1) of the composite system can be most generally written as a linear combination

N M
W)=Y xiali®) ® a”) )
i=1 a=1

where the coefficients x; ,’s form the entries of a rectangular (N x M) matrix X = [x; o].
Now, the state |y) is a statistically pure state of the composite system if the density
matrix of the composite system is given by

o =1Y)l (10)

Note that had the composite system been in a statistically mixed state, its density matrix
would have been of the form

p=>_ pel) (Vul, (11
k

where |;)’s are the pure states of the composite system and 0 < p; < 1 denotes the prob-
ability that the composite system is in the k-th pure state, with D, py = 1. In this paper,
we will restrict ourselves to the case when the composite system is in a pure state denoted
by |¥). Then its density matrix in (10), upon using the decomposition in (9), can be ex-
pressed as

p=2_ D xaxialiV (I ®1a”) (B, (12)

ia B
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Exact Minimum Eigenvalue Distribution 37

where the Roman indices i and j run from 1 to N and the Greek indices « and $ run from 1
to M. We also assume that the pure state |/) is normalized to unity so that Tr[p] = 1. Hence
the coefficients x; ,’s must be such that Tr[p] = 1.

Given the density matrix of the pure composite state in (12), one can then compute the
reduced density matrix of, say, the subsystem A by tracing over the states of the subsystem B

M

pa=Trglpl=) (”|pla”). (13)

a=1

Using the expression in (12) one gets

N M N
Pr= D Y Xiakf i A=Y Wili®) (] (14)

ij=1a=1 ij=1

where W;;’s are the entries of the N x N square matrix W = XX 7. In a similar way, one can
express the reduced density matrix pg = Tra[p] of the subsystem B in terms of the square
M x M dimensional matrix W' = X X.

Let Aj, Ay, ..., Ay denote the N eigenvalues of W = X XT. Note that these eigenvalues
are nonnegative, A; > 0 for all i =1,2,..., N. Now the matrix W' = X"X has M > N
eigenvalues. It is easy to prove that M — N of them are identically 0 and N nonzero eigen-
values of W' are the same as those of W. Thus, in this diagonal representation, one can
express p as

N
pa= Y MO (15)

i=1

where |)\{‘ )’s are the eigenvectors of W = X X . A similar representation holds for p. It then
follows that one can represent the original composite state |1) in this diagonal representation
as

N
) =Y VahhH e rf) (16)
i=1

where |A#) and |A?) represent the normalized eigenvectors (corresponding to nonzero eigen-
values) of W = XX' and W' = X' X respectively. This spectral decomposition in (16) is
known as the Schimdt decomposition. The normalization condition (y|y) = 1, or equiva-
lently Tr[p] = 1, imposes a constraint on the eigenvalues, ZlN: Ai=1.

Note that while each individual state IA[A) ® IAIB ) in the Schimdt decomposition in (16) is
unentangled, their linear combination |v/), in general, is entangled. This simply means that
the composite state |v) can not, in general, be written as a direct product ) = |¢*) ® |¢?)
of two states of the respective subsystems. The spectral properties of the matrix W, i.e., the
knowledge of the eigenvalues Ay, X, ..., Ay, in association with the Schimdt decomposition
in (16), provide useful information about how entangled a pure state is. For example, as
mentioned in the introduction, one useful measure of the entanglement is the von Neumann
entropy, S = — ZlNzl A In(h;).

In addition, the two extreme eigenvalues, the largest A, = max(Ai, As, ..., Ay) and
the smallest Ay, = min(Ay, Ay, ..., Ay) also provide useful information about the entangle-
ment. Note that due to the constraint Zf\; 1 Ai = 1 and the fact that all eigenvalues are non-
negative, it follows that 1 /N < A, < 1and 0 < A, < 1/N. Consider, for instance, the fol-
lowing limiting situations. Suppose that the largest eigenvalue Ap,x = max(Ai, Az, ..., Ay)
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takes its maximum allowed value 1. Then due to the constraint ZIN: ; A =1 and the fact that
A; >0 for all i, it follows that all the rest (N — 1) eigenvalues must be identically 0. In that
case, it follows from (16) that |/) is fully unentangled. On the other hand, if Ay = 1/N
(i.e., it takes its lowest allowed value), it follows that all the eigenvalues must have the same
value, A; = 1/N for all i, again due to the constraint vaz 1 Ai = 1. In this case, one can show
that the pure state |) is maximally entangled, as this state maximizes the von Neumann
entropy S = In(N).

In this paper, we will focus on the smallest eigenvalue 0 < A, < 1/N. As in the case
of the largest eigenvalue above, let us consider the two limiting situations. When A, takes
its maximal allowed value A, = 1/N, it follows again from the constraint Z,N: i =1
that all the eigenvalues must have the same value A; = 1/N. This will thus make the state
|Yr) maximally entangled. In the opposite case, when Ay, = O takes its smallest allowed
value, while it does not provide any information on the entanglement of the state |{), one
sees from the Schmidt decomposition that the dimension of the effective Hilbert space of
the subsystem A gets reduced from N to N — 1. Indeed, if A, is very close to zero, one
can effectively ignore the term containing Ani, in (16) and thus achieve a reduced Hilbert
space, a process called ‘dimensional reduction’ that is often used in the compression of large
data structures in computer vision [17-19]. Thus the knowledge of A, and in particular
its proximity to its upper and lower limits provide informations on both the entanglement
phenomenon as well as on the efficiency of the dimensional reduction process.

So far, our discussion is valid for an arbitrary pure state in (9) with any fixed coeffi-
cient matrix X = [x; o]. Now, such a pure state will be called a random pure state if the
coefficients x; ,’s are random variables, drawn from an underlying probability distribution.
In particular, we will consider the case when the elements of X are independent and iden-
tically distributed random variables, real or complex, drawn from a Gaussian distribution:
Prob[ X] « exp[—%Tr(X 7X)], where the Dyson index 8 = 1,2 corresponds respectively to
the real and complex X matrices. The product W = X XT is called the random Wishart ma-
trix [20]. The joint distribution of the N nonnegative eigenvalues of W is known [21]

N
_BYN B+M-N)-1
PY (i hy) e 2R [T [T = (17)

i=1 j<k

Note however, that in case of a random pure state |{) in (9), the eigenvalues of the
matrix W = XX are not quite the same as that of the Wishart matrix, due to the additional
constraint that Tr[p] = Tr[W] = 1. Thus, the eigenvalues of W that appear in the Schimdt
decomposition in (16), are distributed according to the Wishart law in (17), but in addition
have to satisfy the constraint vaz 1 Ai = 1. This constraint can be explicitly incorporated
by multiplying a delta function 6(2;\': 1 Ai — 1) to the Wishart measure in (17). With this
additional delta function multiplying the Wishart measure, the exponential term in (17) just
becomes a constant and can be absorbed into the overall normalization constant and one
arrives at the jpdf of the eigenvalues of W mentioned in (1) in the introduction.

Given the jpdf (1), we are interested here in the distribution of the minimum eigen-
value Amin. Let Oy p(x) = Prob[Amin > x] be the cumulative distribution of Ap,. The pdf
of Amin is simply obtained by taking the derivative, Py y(x) = —d On a(x)/dx. Since the
event Amin > x necessarily implies that all the eigenvalues A; > x (foralli =1,2,..., N),
it follows, upon using the explicit jpdf (1), that Qn p(x) is precisely given by the multiple
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Exact Minimum Eigenvalue Distribution 39

integral (with N < M)

oo (o) N N B _ _
On.m(x) :BM,N/ / 8 (Z)“" - 1) [T _)"‘|ﬁ1_[)“i2(M . a8y
* * i=1

j<k i=1

The real technical challenge is to evaluate this multiple integral. In the next two sections,
we show how to compute this integral exactly respectively for § =2 and 8 = 1, for all
M = N, i.e., when the Hilbert spaces of the two subsystems have equal dimensions. In this
case, i.e., when M = N, we will denote, for simplicity of notations, Qy y(x) = Qx(x) for
the cumulative distribution of the minimum eigenvalue and the corresponding density by
Py n(x)=Py(x) =—dQn(x)/dx.

3 A Complex Random Vector

This section is devoted to finding exactly the distribution of the minimum eigenvalue A,
or the minimum Schmidt coefficient for random complex states. Let

On(x) =Prob[Apin > x]=Prob[A; > x, A > x,..., Ay > x]. (19)
Therefore
00 00 N N
On(x) =By / f 8 (Z Ai = 1) [ =207 ] dn (20)
x x i=1 j<k i=1
An evaluation of this multiple integral proceeds by introducing an auxiliary one defined by

N

o0 [e ] N
I(x,1) :/ / 8 (in —;> [ ]y =207 ] an. 1)
x * i=1

Jj<k i=1

so that Oy (x) = By nI(x, 1). Consider the following Laplace transform of 7 (x, ):

[o'e] 00 00 N
/ I(x, e dt :/ / e Tk [Ty — a0 ] di. (22)
0 X X 1

Jj<k i=
A linear shift and scaling z; = s(A; — x) results in

N

o] e—:Nx 0 o] N
/ I(x,t)edt = - / . / e~ Li=id H(Zj —z)? 1_[ dz;. (23)
0 0

0 § <k i=1

Thus the dependence on s and x just factors out of the integral. The integral happens to be
one of the Selberg integrals which can be evaluated explicitly [22] and this gives

e8] e—sNx N-1
/ I(x, e "dt = - [[rG+2rG+D. (24)

N2
0 =0
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An inverse Laplace transform yields

[ TG+DTG+1D)

I(x,1) = v (t— N0V 'O — Nx). (25)
Using the known normalization constant [11]
['(N?)
Byn = —x . ; (26)
[I[i2o TN =HT(N —j+1)
we finally arrive at
On () =Prob[Amn = x]1=BynI(x, D=1 - N0V 'O1-Nx). @7
Subsequently, the pdf is given by
d
PN(X):_% = N(N2 = 1)(1 — Nx)M20(1 — Nx). (28)

A plot of this pdf can be found in Fig. 1 for N = 4. Thus Py(x) in x € [0, 1/N] has the
limiting behavior

Py(x) > N(N*—1) asx—0
= N(N* =11 = Nx)¥ =2 asx— 1/N. (29)

Note that in the regime where x < 1/N, the pdf in (28) becomes exponential, Py (x)
N(N? — 1)exp[—N(N? — 1)x]. Let us also note that the distribution of the smallest eigen-
value in (27) is identical to that of the smallest intensity component of a complex random
state derived recently [23], provided one replaces N2 (in the exponent in (27)) by N.

Moments of Amin: From the explicit expression of the pdf in (28) one can easily compute all
the moments of Ap,. For the k-th moment we get

oty [T _ DG+ Drav)
uk(N)—umm)—/o Py dx = S (30)

In particular, for kK = 1, we obtain for all N

1

pi(N) = (Amin) = N3’ 3D

thus proving the recent conjecture by Znidaric [15] based on evaluations for small N. Putting

k =2 in (30), we get the second moment p, = m Thus the variance is given by
) , 1 (N*—1
0° = ua(N) — [1(N)] :W N2—~I—l . (32)

4 A Real Random Vector
While complex random vectors are “generic”, real vectors are important as well. For in-

stance in the case when the system has a time-reversal symmetry or any anti-unitary sym-
metry the eigenfunctions can be in general chosen to be real and the relevant ensembles are
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Exact Minimum Eigenvalue Distribution 41

the “orthogonal” ones (such as the Gaussian orthogonal ensemble and the circular orthog-
onal ensemble), wherein general orthogonal transformations leave the ensemble invariant
[22, 24]. The entanglement properties of real and complex random states may, in general,
differ. For instance for so called “single-particle” states or one-magnon states, real states
have lower entanglement measured in terms of two-spin entanglement content than the case
of the complex states [25]. In general, much less is known for random real states than the
complex ones, although for instance several many-body Hamiltonians (say of spins) have
natural time-reversal symmetry. In this section the distribution of the minimum eigenvalue
of the real case is calculated exactly.

The jpdf of the eigenvalues A; in this case (we again restrict ourselves to the case M = N)
is

N N
1
Py(hi, ..., hn) = Cy nd (in—l)l'[u,»—m]'[ﬁ, (33)
i=1 <k i=1 i
where Cy y is the normalization constant and is known to be [11]
2N i+ j+3
Cyly = r r . 34
MM R NAT(N2/2) Q ( 2 ) < 2 ) oo

The cumulative distribution of the smallest eigenvalue, Qy(x) = Prob[Ay, > x], is given
by

o] 00 N N 1
On(x)= CN,N/ / ) ( Ap — 1) [Aj — Akl d;. (35)
x X ; l_[ ! 11:! VA

Jj<k

To evaluate this multiple integral, we proceed, as in the previous section, by defining an
auxiliary integral J (x, t) as

0 0 N N 1
J(x,t):/ / s(in—z)H|x_,»—xk|]_[ﬁdxi, (36)
* * i=1 i=1 !

Jj<k

sothat Qy(x) =Cy nJ(x,1).
Taking the Laplace transform of (36) leads to

9] 1 00 [e3) LyN N 1
J(x, e dt = 7[ / e zzi=t  y; =y | | —=dyi,  37)
/(; (ZS)NZ/Z 2sx 2sx 1_[ ! l_! ﬁ

Jj<k i=

where the scaled variable y; = 2sX,;. We next use a result due to Edelman [26] for the Wishart
orthogonal ensemble whose jpdf is given by

N
I <N 1
PY(r...oymy=ayye 1Z=0 [T —=T v — wl (38)
ol Vi
where the normalization constant ay y is
CN,N
NN = INRE (N ) <7
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For such an ensemble Edelman [26] showed that the distribution of the smallest eigenvalue
0% (z) = Prob [ymin > z] is given explicitly by

o0 o0 N
QW(Z)=/ / PY (o) [ [dn -+ dyw
< < i=l1

_ NI'(N) X e=N2 /N1 1 DAY
TN ). Sy >

— 40
R (40)

where U (a, b; 7) is the confluent hypergeometric function [27] of the second kind that sat-
isfies the differential equation

d*U dUu
—+b—-2)— —aU=0 41
S +®-2) PR 41
with the boundary conditions
rd-»
U@,bh,0)) = ————, U(a,b, =0. 42
(a,b,0) Fdta—b (a,b,z— 00) (42)

Working back we therefore obtain

/OOJ( e dt = — NI RSN L,
, e = N | 2V AT (N Dan | e S5 2 T22)Y
(43)

To make further progress, it turns out to be easier to work with the probability density
function rather than the cumulative distribution Q y(x),

dQy(x) dJ(x,1)
Py(x) = ——— = —Cyy———. (44)
dx dx
Taking the derivative of (43) with respect to x leads to
®dJ(x,t 1 e N—-1 1
_/ OO0 g —py—— 4y —=sx), 45)
0 dx X sNP=D/2 2 2
where
NT'(N)
N = — (46)
T(N/2)ay y2V+2N-2)/2
The task then is to find the Laplace inverse:
dJ(x,t b ~Nsx N—-1 1
_A D byl e Ty ——.sx) | (47)
dx Jx T LsWi=D/2 2 2
First, an application of the convolution theorem leads to
) PR P (t = No)NV=920 (¢ — Nx) (48)
S| gN2=nj2 | T F(NLl) ’
2
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Second, using an integral representation of the hypergeometric function U (a, b, z) [27]
namely

1 o0
U(a,b,z):mf RS § R Lol (49)
0

one obtains the following inverse:

3/2
- [U <N__1, 1 sx)] _ LI(N_3)/2(X+Z‘)_(N+2)/2, (50)

BN Fes)

Using the two inverses in (48) and (50) and the convolution theorem, we get upon simplify-
ing

—Nsx
| e N-—-1 1
L I:S(Nz—l)/ZU< ) ,—E,Sx>i|

3/2 t—Nx B N42 N2-3
=ﬁ/ T ()T (1= = Nx) Tl
PN Jo

x~ (V=D wiys (N+2 N—1 N*4+N-2 t—Nx
=W(f—NX) g 2F1< STy Ty ) (51)
2

Here , Fi(a, b, c, z) is the standard hypergeometric function [27], and the integral can be
found in [16]. Using this along with (44,47) and substituting ¢ = 1, we finally get the pdf of
the minimum eigenvalue A, as

N+2 N—1 N24+N—-2 1—-N
PN(x)zANx*N“(l—Nx)W”N*‘”/ZzFl( = . B x)v

2 7 27 2 ’ x
0<x<1/N (52)

and Py (x) =0 for x > 1/N. The constant Ay is given by

_ NT(N)I'(N?/2)
C2VSIT(N/T((N2+N —2)/2)

(53)

Ay

This solves exactly for the distribution of the minimum eigenvalue of the reduced density
matrices of bipartite random real states when the dimensions of the subspaces are equal. In
the simplest possible case of real states of two qubits, N = 2, the distribution is simply

Pﬂx):i, 0<x<1/2; P,(x)=0, x>1/2. 54)
x(1—x)

This follows from (52) as ,F(2,1/2,2,x) = 1/4/1 — x. Alternatively it almost immedi-
ately follows from the jpdf in (33) as there are only two eigenvalues that sum to unity in
this case, and the distribution of the one which is less than one-half is precisely P,(x). In
Fig. 1, we plot the pdf Py (x) of A, for N = 4, both for the complex case given in (28) and
the real case given in (52).

In Appendix A, we work out the limiting behavior of Py (x) as x — 0 and x — 1/N. For
general N, one finds
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Fig. 1 The pdf Py (x) of the 100 «
minimum eigenvalue Api, vs. x | |
for N =4, for the complex and | - (r::ar?E:;ecase
the real cases ((28) and (52) 1
respectively). In the complex 80 F i
case, the density approaches a |
constant as x — 0, whereas for |
the real case, it diverges as x12 !
asx — 0 B

<

=

o

0.1
X
2
Py (x) ~ VAT (MLW/2) x? asx =0
2N=IT2(N/2)T((N — 1) /2)
2
~ AyN V21 = Nx)VHN=9/2 a5 x — 1/N. (55)

Comparing this limiting behavior in the real case in (55) with that of the complex case in
(29) one finds that while in the former Py (x) diverges as x~!/2 as x — 0, in the latter it
approaches a constant. In the other limit x — 1/N, both the densities approach zero as a
power law (1 — Nx)", but with different exponents v = N2 — 2 (for the complex case) and

v =(N?+ N — 4)/2 for the real case.

Moments of Amin: One can use the explicit result for the p.d.f. Py(x) of Ay in (52) to

calculate its k-th moment

1/N
i (N) = (hin) = Ay / V(L — Ny W2
0

N+2 N—1 N*4+N-2 1-N
><2F1( + + — x)dx

27 27 2 7 x

o0
2N 2
=AN/ y(N +N 4)/2(N+y) (N“+2k)/2
0

N+2 N—1 N2+ N-2
F , , ,— 56
X o F < 5 > 2 Y) (56)
where we made a change of variable y = —N + 1/x in the first line. We next use the fol-

lowing known integral [16]
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/ "N x +2) % Fi(a, B, y, —x) dx
0

_ Frye@—y+o)l'(B—y +o)
Foe)r(a+B—y+o0)

2F1((X_y+0,/3_)/+0,a+ﬂ_)/+U,1_Z)

(57)
in (56) and also the value of Ay from (53) to arrive at an explicit expression for the k-th
moment (valid for all N),

['(N + DI(N2/2)T(k +2)T(k + 1/2)

W) = F N Tk + N2/2)T k£ (N £ 3)/2)271

N+3
x2F1<k+2,k+1/2,k+T+,l—N>. (58)

One can verify that ;o(N) = 1, thus ensuring the correct normalization. For the average
value of A, we use k =1 and get

JAT(N) F( 3 N+5 )

) = (i) = e 8 e N £ 5y 12 N

(59)

Thus the expression for (An;,) for arbitrary N in the real case is considerably more com-
plicated than its counterpart in (31) for the complex case. One finds, from (59), that p;(N)
decreases with increasing N, e.g., w1 (1) =1, u1(2) = (4 — 1)/8, u1(3) = 2 —+/3)/9, etc.
In Appendix B, we show that asymptotically for large N, p1(N) decays as

11 (N) ~ % where ¢ =2 [1 - \/?erfc(l/ﬁ)} —0.688641 ... (60)
where erfc(x) = % fxoo e du is the complementary error function. The large N result
in (60) for the real case should be compared to that of the complex case where 1 (N) =
1/N3. One sees that the average value of the minimum eigenvalue in the former case is less
by a constant factor c = 0.688641 ... compared to the later case. In Fig. 2, we plot both the
exact formula for 11 (N) in (59) and the asymptotic form in (60) against N.

5 Conclusion

In this paper we have computed the exact probability distribution of the minimum eigenvalue
Amin Of an entangled random (both real and complex) pure state of a bipartite system com-
posed of two subsystems whose respective Hilbert spaces have equal dimensions M = N.
We have also computed exactly all the moments of A, for all N. As a byproduct, we prove
that (Amin) = 1/N3 for all N for complex matrices, a result recently conjectured [15]. The
pdf of the minimum eigenvalue in the real case differs significantly from its complex coun-
terpart.

Apart from providing important informations on the nature of the entanglement of a ran-
dom pure state as well as on the degree to which the dimension of the Hilbert space of a
subsystem can be reduced, our result for the distribution of the minimum eigenvalue has
some relevance in the general context of extreme value statistics. This subject has been
around for a long time [28], but has seen a recent resurgence due to its many applications
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Fig. 2 A log-log plot of the 0
exact formula of 11 (N) in (59) RN
vs. N compared with the AN
asymptotic formula N N exact formula
11 (N) ~c¢/N? vs. N with N — — - asymptotic ¢/N°
¢ =0.688641 for the real case N\
A A
-5 + \\ 4
N
N
—_ N\
Z
=)
£
-10 1
-15 L 1 I
-0.2 0.8 1.8 2.8 3.8
In[N]

in diverse areas such as engineering, economics and physical sciences [29]. If the underly-
ing random variables are independent and identically distributed then there are three pos-
sible limiting universal distributions for the extreme events, the Fréchet, the Gumbel and
the Weibull distributions. However, much less is known when the underlying random vari-
ables are strongly correlated. In such cases, the limiting distribution (for large N) of the
maximum is known exactly only in very few cases. For example, the limiting distribution
of the largest eigenvalue of a N x N Gaussian unitary random matrix (GUE) is given by
the celebrated Tracy-Widom law [30, 31], which has found many recent applications.' Sim-
ilarly, the Tracy-Widom law also describes the limiting distribution of the largest eigenvalue
of Wishart matrices [33, 34], for random matrices with certain non-Gaussian entries [35]
and the scaled height of a (1 4 1)-dimensional growth models [32, 36]. The probabilities of
large deviations of Ap,y, outside the regime of the validity of the Tracy-Widom law, have
also been computed recently both for Gaussian [37] and Wishart matrices [19, 33]. Other
examples for which the limiting distribution is known exactly include the maximum relative
height of a class of one dimensional fluctuating interfaces in their steady states in a finite
system [38—40] and 1/f* noise signals [41]. In contrast, much less is known about the dis-
tribution of the extreme eigenvalues for finite V, a notable exception being the minimum
eigenvalue for N x N Wishart matrices whose distribution was computed exactly by Edel-
man for all N [26]. In our present context, the eigenvalues of a random pure state are also
strongly correlated due to the presence of the Vandermonde term [] <k [A; — Xel? in the
jpdf (1). So our results provide another rare exactly solvable case for the distribution of the
minimum of a set of N strongly correlated random variables, and this is not just for large N
but for any finite N.

Computing the distribution of A, for unequal dimensions (M # N) of the Hilbert spaces
of the subsystems remains a challenging open problem.

IFor a recent review of the appearance of Tracy-Widom distribution in several physics and biology problems,
see [32].
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Appendix A: Limiting Behavior of Py (x) for the Real Case
In this appendix, we derive the behavior of Py (x) in (55), starting from the exact expression
of Py(x) in (52) and (53). The behavior near the upper limit x — 1/N is simple to derive.
Using » Fi (o, B, y,0) = 1, one immediately finds from (52) thatas x — 1/N

Py (x) = AyN"N2(1 = Nx)W+N=b/2, (A.1)

In contrast, deriving the behavior of Py(x) as x — 0 is slightly more tricky. To derive
this, we first use the following identity of the hypergeometric function [16]

2F1(0[7 :37 Vs Z) = (1 - Z)_ﬁZFl(ﬂ7 y -y, Z/(Z - 1)) (AZ)

to rewrite

A
Py(x) = \/_;(1 — N NHNH2[ (N 1)x]" VD2

N—1 N*—4 N?>*4+N-=-2 1-N
X2 F, , AN S )
2 2 2 1—(N—1Dx
Now, in this form, it is easy to take the limit x — 0. One gets, as x — 0,
Ay N—-1 N>—4 N>’4+N-=-2
P, — F , , 1 A4
N (X) — \/;2 1( 2 3 2 (A4)

Using further the following identity [16]

Ty —a—p)
ZFl(a’ﬂ’y’])_F(y—a)l"(y—ﬂ) (AS)

and the expression for Ay in (53) we get, as x — 0

JTT(N)T(N?/2) ]x71/2'

Py(x) > [2N_1rz(N/z>r(<N =D/2)

(A.6)

Appendix B: Asymptotic Behavior of 1 (N) for Large N for the Real Case

In this appendix we derive the asymptotic behavior for large N of @ (N) for the real case
given in (59). We first use the following integral representation of the hypergeometric func-
tion [16]

2Fi(e, B,y,2) = P =P — 1) d, (B.1)

1 1

where B(x,y) =T (x)I"(y)/'(x + y) is the standard Beta function. Using this representa-
tion, we can express (1 (N) in (59) as an integral

24-Np(N) !

s W) 1201 _ ANJ2 3
N2T2(N/2) Ot (1 =0)""[1+ N —=Dt]dt, (B.2)

ui(N) =
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which is still exact for all N. Next we consider the integral above, rescale t = x /N and then
take the large N limit as follows,

! 1N N—-117"
1/2 N/2 -3 5. 1/2 N/2
/(; (1 =) [14+ (N —Dt] " dt = N3/2/0 x/*(1—=x/N) |:1+ N xi| dx

1 172 ,—x/2
~ N3/2/0 TEWSE dx. (B.3)

Also, by Stirling’s formula, T'(N) ~ +/2r NV~1/2¢=N for large N. Using these results
in (B.2) we get, to leading order for large N,

V) ~ (B.4)

where the prefactor c is given by the expression

2312
_42 f dx =2 [1 - /g erfc(l/ﬁ)] =0.688641 ... (B.5)

(d+x)

where erfc(x) = % [ ¢~ du is the complementary error function.
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